Section 11.5 part 2

proof of theorem 11.7

ThII.7 Every finitely generated separable extension is simple. Additional assumption: the ground field F is infinite.
Pf $K=F\left(u_{1}, \ldots, u_{n}\right)$ Wanted: $u \in K$ such that $K=F(u)$
Induction in n. The case $n=1$ is trivial: $u=u_{1}$.
It suffices just prove $n=2$, because then induction step is easy:
$k-1$ to k - step

$$
K=F\left(u_{1}, \ldots, u_{k}\right)=F\left(u_{1}, \ldots, u_{k-1}\right)\left(u_{k}\right)=F(t)\left(u_{k}\right)=F\left(t, u_{k}\right)=F(u)
$$

inductive assumption
inductive assumption or $n=2$

Section 11.3 p 384 between 6×4 and 6×5, also proof of Th 11.10
The proof thus reduces to $n=2$ case
If $K=F(v, w)$, then there exists $u \in K$ such that $K=F(u)$.
Let $p \in F[x]$ be the minimal polynomial for v
$q \in F[x]$

Let L be a splitting field of $p q \in F[x]$
Denote the roots by

$$
\begin{aligned}
& v_{v}=n_{1}, n_{2}, \ldots, w_{n}-\text { reots of } q \text { in } L \\
& v=v_{1}, v_{2}, \ldots, v_{m} \quad, \quad-p-1 \text { - }
\end{aligned}
$$

Pick $c \in F$ such that

$$
c \neq \frac{v_{i}-v}{\omega-\omega_{j}} \quad 1 \leq i \leq m, 1<j \leq h
$$

Since F is infinite, we can certainly find such e

Separability guarantees $w_{s} \neq w_{j}$ for ${ }^{j} 1$
lenoreover, almost every $c \in F$ (all but finitely many)
Set $u=v+c n s \quad$ wanted: $K=F(u)$

$$
K=F(v, w) \text { - given }
$$

Note that
$w \in F(u)$ implies $v=u-c a v \in F(u)$
thus we only heed to prove that $w \in F(u)$
Suffices:

$$
v, w \in F(u)
$$

will imply

$$
\begin{aligned}
& F(v, w) \subseteq F(u) \\
& \text { also } \\
& F(v, w) \supseteq F(u) \\
& \text { because } u=v+c n s
\end{aligned}
$$

Consider the polynomial
$h=p(u-c x) \in F(u)[x] \quad$ Meaning of the notation: $p(u-c w)=\left.p(x)\right|_{x=u-c x}$
no is a root of h (and q)

$$
h(w)=p(u-c w)=p(v)=0
$$

other roots of q, namely $w_{2}, \ldots w_{n}$ are not roots of h because $u-c w_{j} \neq v_{i}$ i.e, $v+c w-c w_{j} \neq v_{i}$ by the choice of c The polynomials h and q share exactly one common root in h, that is is

Let $r \in F(u)[x]$ be the minimal polynomial of as over $F(u)$
$r \mid q$ in $F(u)[x]$ because $q(\omega)=0$ (Th 11.6)
$r \mid h$ in $F(u)[x]$ \qquad
no expect that $\omega \in F(u)$
that ix $r=x-w$
In suffices to prove that $\operatorname{deg} \gamma=1$

Thins every root of r must be also a root of both 9 and h
Thus, in L, r has no roots except is.
Since q splits completely in L and $r \mid q$, the polynomial r cannot Lave roots outside Ls (also splits completely in b).

It follows that r no more roots at all except for n.
Thus $\operatorname{deg} r=1$.

